3.4.37 \(\int \frac {\cos ^2(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx\) [337]

3.4.37.1 Optimal result
3.4.37.2 Mathematica [C] (verified)
3.4.37.3 Rubi [A] (warning: unable to verify)
3.4.37.4 Maple [B] (verified)
3.4.37.5 Fricas [B] (verification not implemented)
3.4.37.6 Sympy [F]
3.4.37.7 Maxima [A] (verification not implemented)
3.4.37.8 Giac [F]
3.4.37.9 Mupad [F(-1)]

3.4.37.1 Optimal result

Integrand size = 26, antiderivative size = 146 \[ \int \frac {\cos ^2(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx=-\frac {5 i \text {arctanh}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{8 \sqrt {2} \sqrt {a} d}+\frac {5 i a}{12 d (a+i a \tan (c+d x))^{3/2}}-\frac {i a^2}{2 d (a-i a \tan (c+d x)) (a+i a \tan (c+d x))^{3/2}}+\frac {5 i}{8 d \sqrt {a+i a \tan (c+d x)}} \]

output
-5/16*I*arctanh(1/2*(a+I*a*tan(d*x+c))^(1/2)*2^(1/2)/a^(1/2))/d*2^(1/2)/a^ 
(1/2)+5/8*I/d/(a+I*a*tan(d*x+c))^(1/2)+5/12*I*a/d/(a+I*a*tan(d*x+c))^(3/2) 
-1/2*I*a^2/d/(a-I*a*tan(d*x+c))/(a+I*a*tan(d*x+c))^(3/2)
 
3.4.37.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.14 (sec) , antiderivative size = 51, normalized size of antiderivative = 0.35 \[ \int \frac {\cos ^2(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx=\frac {i a \operatorname {Hypergeometric2F1}\left (-\frac {3}{2},2,-\frac {1}{2},\frac {1}{2} (1+i \tan (c+d x))\right )}{6 d (a+i a \tan (c+d x))^{3/2}} \]

input
Integrate[Cos[c + d*x]^2/Sqrt[a + I*a*Tan[c + d*x]],x]
 
output
((I/6)*a*Hypergeometric2F1[-3/2, 2, -1/2, (1 + I*Tan[c + d*x])/2])/(d*(a + 
 I*a*Tan[c + d*x])^(3/2))
 
3.4.37.3 Rubi [A] (warning: unable to verify)

Time = 0.29 (sec) , antiderivative size = 144, normalized size of antiderivative = 0.99, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.269, Rules used = {3042, 3968, 52, 61, 61, 73, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^2(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sec (c+d x)^2 \sqrt {a+i a \tan (c+d x)}}dx\)

\(\Big \downarrow \) 3968

\(\displaystyle -\frac {i a^3 \int \frac {1}{(a-i a \tan (c+d x))^2 (i \tan (c+d x) a+a)^{5/2}}d(i a \tan (c+d x))}{d}\)

\(\Big \downarrow \) 52

\(\displaystyle -\frac {i a^3 \left (\frac {5 \int \frac {1}{(a-i a \tan (c+d x)) (i \tan (c+d x) a+a)^{5/2}}d(i a \tan (c+d x))}{4 a}+\frac {1}{2 a (a-i a \tan (c+d x)) (a+i a \tan (c+d x))^{3/2}}\right )}{d}\)

\(\Big \downarrow \) 61

\(\displaystyle -\frac {i a^3 \left (\frac {5 \left (\frac {\int \frac {1}{(a-i a \tan (c+d x)) (i \tan (c+d x) a+a)^{3/2}}d(i a \tan (c+d x))}{2 a}-\frac {1}{3 a (a+i a \tan (c+d x))^{3/2}}\right )}{4 a}+\frac {1}{2 a (a-i a \tan (c+d x)) (a+i a \tan (c+d x))^{3/2}}\right )}{d}\)

\(\Big \downarrow \) 61

\(\displaystyle -\frac {i a^3 \left (\frac {5 \left (\frac {\frac {\int \frac {1}{(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}d(i a \tan (c+d x))}{2 a}-\frac {1}{a \sqrt {a+i a \tan (c+d x)}}}{2 a}-\frac {1}{3 a (a+i a \tan (c+d x))^{3/2}}\right )}{4 a}+\frac {1}{2 a (a-i a \tan (c+d x)) (a+i a \tan (c+d x))^{3/2}}\right )}{d}\)

\(\Big \downarrow \) 73

\(\displaystyle -\frac {i a^3 \left (\frac {5 \left (\frac {\frac {\int \frac {1}{a^2 \tan ^2(c+d x)+2 a}d\sqrt {i \tan (c+d x) a+a}}{a}-\frac {1}{a \sqrt {a+i a \tan (c+d x)}}}{2 a}-\frac {1}{3 a (a+i a \tan (c+d x))^{3/2}}\right )}{4 a}+\frac {1}{2 a (a-i a \tan (c+d x)) (a+i a \tan (c+d x))^{3/2}}\right )}{d}\)

\(\Big \downarrow \) 219

\(\displaystyle -\frac {i a^3 \left (\frac {5 \left (\frac {\frac {i \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2}}\right )}{\sqrt {2} a^{3/2}}-\frac {1}{a \sqrt {a+i a \tan (c+d x)}}}{2 a}-\frac {1}{3 a (a+i a \tan (c+d x))^{3/2}}\right )}{4 a}+\frac {1}{2 a (a-i a \tan (c+d x)) (a+i a \tan (c+d x))^{3/2}}\right )}{d}\)

input
Int[Cos[c + d*x]^2/Sqrt[a + I*a*Tan[c + d*x]],x]
 
output
((-I)*a^3*(1/(2*a*(a - I*a*Tan[c + d*x])*(a + I*a*Tan[c + d*x])^(3/2)) + ( 
5*(-1/3*1/(a*(a + I*a*Tan[c + d*x])^(3/2)) + ((I*ArcTan[(Sqrt[a]*Tan[c + d 
*x])/Sqrt[2]])/(Sqrt[2]*a^(3/2)) - 1/(a*Sqrt[a + I*a*Tan[c + d*x]]))/(2*a) 
))/(4*a)))/d
 

3.4.37.3.1 Defintions of rubi rules used

rule 52
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^(n + 1)/((b*c - a*d)*(m + 1))), x] - Simp[d*(( 
m + n + 2)/((b*c - a*d)*(m + 1)))   Int[(a + b*x)^(m + 1)*(c + d*x)^n, x], 
x] /; FreeQ[{a, b, c, d, n}, x] && ILtQ[m, -1] && FractionQ[n] && LtQ[n, 0]
 

rule 61
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^(n + 1)/((b*c - a*d)*(m + 1))), x] - Simp[d*(( 
m + n + 2)/((b*c - a*d)*(m + 1)))   Int[(a + b*x)^(m + 1)*(c + d*x)^n, x], 
x] /; FreeQ[{a, b, c, d, n}, x] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0 
] || (NeQ[c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d 
, m, n, x]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3968
Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_ 
), x_Symbol] :> Simp[1/(a^(m - 2)*b*f)   Subst[Int[(a - x)^(m/2 - 1)*(a + x 
)^(n + m/2 - 1), x], x, b*Tan[e + f*x]], x] /; FreeQ[{a, b, e, f, n}, x] && 
 EqQ[a^2 + b^2, 0] && IntegerQ[m/2]
 
3.4.37.4 Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 405 vs. \(2 (114 ) = 228\).

Time = 10.67 (sec) , antiderivative size = 406, normalized size of antiderivative = 2.78

method result size
default \(-\frac {4 i \left (\cos ^{3}\left (d x +c \right )\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}+4 i \left (\cos ^{2}\left (d x +c \right )\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}-20 \sin \left (d x +c \right ) \left (\cos ^{2}\left (d x +c \right )\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}-15 i \cos \left (d x +c \right ) \arctan \left (\frac {\cos \left (d x +c \right )+1+i \sin \left (d x +c \right )}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right )-30 i \cos \left (d x +c \right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}-20 \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right ) \sin \left (d x +c \right )-15 i \arctan \left (\frac {\cos \left (d x +c \right )+1+i \sin \left (d x +c \right )}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right )-30 i \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}+15 \arctan \left (\frac {\cos \left (d x +c \right )+1+i \sin \left (d x +c \right )}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right ) \sin \left (d x +c \right )}{48 d \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \left (\cos \left (d x +c \right )+1\right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}}\) \(406\)

input
int(cos(d*x+c)^2/(a+I*a*tan(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 
output
-1/48/d*(4*I*cos(d*x+c)^3*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)+4*I*cos(d*x+c 
)^2*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)-20*sin(d*x+c)*cos(d*x+c)^2*(-cos(d* 
x+c)/(cos(d*x+c)+1))^(1/2)-15*I*cos(d*x+c)*arctan(1/2*(cos(d*x+c)+1+I*sin( 
d*x+c))/(cos(d*x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))-30*I*cos(d*x+c) 
*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)-20*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)* 
cos(d*x+c)*sin(d*x+c)-15*I*arctan(1/2*(cos(d*x+c)+1+I*sin(d*x+c))/(cos(d*x 
+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))-30*I*(-cos(d*x+c)/(cos(d*x+c)+1 
))^(1/2)+15*arctan(1/2*(cos(d*x+c)+1+I*sin(d*x+c))/(cos(d*x+c)+1)/(-cos(d* 
x+c)/(cos(d*x+c)+1))^(1/2))*sin(d*x+c))/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2) 
/(cos(d*x+c)+1)/(a*(1+I*tan(d*x+c)))^(1/2)
 
3.4.37.5 Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 271 vs. \(2 (105) = 210\).

Time = 0.25 (sec) , antiderivative size = 271, normalized size of antiderivative = 1.86 \[ \int \frac {\cos ^2(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx=\frac {{\left (-15 i \, \sqrt {\frac {1}{2}} a d \sqrt {\frac {1}{a d^{2}}} e^{\left (3 i \, d x + 3 i \, c\right )} \log \left (4 \, {\left (\sqrt {2} \sqrt {\frac {1}{2}} {\left (a d e^{\left (2 i \, d x + 2 i \, c\right )} + a d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {1}{a d^{2}}} + a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) + 15 i \, \sqrt {\frac {1}{2}} a d \sqrt {\frac {1}{a d^{2}}} e^{\left (3 i \, d x + 3 i \, c\right )} \log \left (-4 \, {\left (\sqrt {2} \sqrt {\frac {1}{2}} {\left (a d e^{\left (2 i \, d x + 2 i \, c\right )} + a d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {1}{a d^{2}}} - a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) + \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (-3 i \, e^{\left (6 i \, d x + 6 i \, c\right )} + 11 i \, e^{\left (4 i \, d x + 4 i \, c\right )} + 16 i \, e^{\left (2 i \, d x + 2 i \, c\right )} + 2 i\right )}\right )} e^{\left (-3 i \, d x - 3 i \, c\right )}}{48 \, a d} \]

input
integrate(cos(d*x+c)^2/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="fricas")
 
output
1/48*(-15*I*sqrt(1/2)*a*d*sqrt(1/(a*d^2))*e^(3*I*d*x + 3*I*c)*log(4*(sqrt( 
2)*sqrt(1/2)*(a*d*e^(2*I*d*x + 2*I*c) + a*d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 
 1))*sqrt(1/(a*d^2)) + a*e^(I*d*x + I*c))*e^(-I*d*x - I*c)) + 15*I*sqrt(1/ 
2)*a*d*sqrt(1/(a*d^2))*e^(3*I*d*x + 3*I*c)*log(-4*(sqrt(2)*sqrt(1/2)*(a*d* 
e^(2*I*d*x + 2*I*c) + a*d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(1/(a*d^2 
)) - a*e^(I*d*x + I*c))*e^(-I*d*x - I*c)) + sqrt(2)*sqrt(a/(e^(2*I*d*x + 2 
*I*c) + 1))*(-3*I*e^(6*I*d*x + 6*I*c) + 11*I*e^(4*I*d*x + 4*I*c) + 16*I*e^ 
(2*I*d*x + 2*I*c) + 2*I))*e^(-3*I*d*x - 3*I*c)/(a*d)
 
3.4.37.6 Sympy [F]

\[ \int \frac {\cos ^2(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx=\int \frac {\cos ^{2}{\left (c + d x \right )}}{\sqrt {i a \left (\tan {\left (c + d x \right )} - i\right )}}\, dx \]

input
integrate(cos(d*x+c)**2/(a+I*a*tan(d*x+c))**(1/2),x)
 
output
Integral(cos(c + d*x)**2/sqrt(I*a*(tan(c + d*x) - I)), x)
 
3.4.37.7 Maxima [A] (verification not implemented)

Time = 0.32 (sec) , antiderivative size = 138, normalized size of antiderivative = 0.95 \[ \int \frac {\cos ^2(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx=\frac {i \, {\left (15 \, \sqrt {2} \sqrt {a} \log \left (-\frac {\sqrt {2} \sqrt {a} - \sqrt {i \, a \tan \left (d x + c\right ) + a}}{\sqrt {2} \sqrt {a} + \sqrt {i \, a \tan \left (d x + c\right ) + a}}\right ) + \frac {4 \, {\left (15 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2} a - 20 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )} a^{2} - 8 \, a^{3}\right )}}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {5}{2}} - 2 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {3}{2}} a}\right )}}{96 \, a d} \]

input
integrate(cos(d*x+c)^2/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="maxima")
 
output
1/96*I*(15*sqrt(2)*sqrt(a)*log(-(sqrt(2)*sqrt(a) - sqrt(I*a*tan(d*x + c) + 
 a))/(sqrt(2)*sqrt(a) + sqrt(I*a*tan(d*x + c) + a))) + 4*(15*(I*a*tan(d*x 
+ c) + a)^2*a - 20*(I*a*tan(d*x + c) + a)*a^2 - 8*a^3)/((I*a*tan(d*x + c) 
+ a)^(5/2) - 2*(I*a*tan(d*x + c) + a)^(3/2)*a))/(a*d)
 
3.4.37.8 Giac [F]

\[ \int \frac {\cos ^2(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx=\int { \frac {\cos \left (d x + c\right )^{2}}{\sqrt {i \, a \tan \left (d x + c\right ) + a}} \,d x } \]

input
integrate(cos(d*x+c)^2/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="giac")
 
output
integrate(cos(d*x + c)^2/sqrt(I*a*tan(d*x + c) + a), x)
 
3.4.37.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^2(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^2}{\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}} \,d x \]

input
int(cos(c + d*x)^2/(a + a*tan(c + d*x)*1i)^(1/2),x)
 
output
int(cos(c + d*x)^2/(a + a*tan(c + d*x)*1i)^(1/2), x)